Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate and statedependent friction

نویسندگان

  • Nadia Lapusta
  • James R. Rice
  • Yehuda Ben-Zion
  • Gutuan Zheng
چکیده

We present an efficient and rigorous numerical procedure for calculating the elastodynamic response of a fault subjected to slow tectonic loading processes of long duration within which them are episodes of rapid earthquake failure. This is done for a general class of rateand state-dependent friction laws with positive direct velocity effect. The algorithm allows us to treat accurately, within a single computational procedure, loading intervals of thousands of years and to calculate, for each earthquake pisode, initially aseismic accelerating slip prior to dynamic rupture, the rupture propagation itself, rapid post seismic deformation which follows, and also ongoing creep slippage throughout the loading period in velocity-strengthening fault regions. The methodology is presented using the two-dimensional (2-D) antiplane spectral formulation and can be readily extended to the 2-D in-plane and 3-D spectral formulations and, with certain modifications, to the space-time boundary integral formulations as well as to their discretized evelopment using finite difference or finite element methods. The methodology can be used to address a number of important issues, such as fault operation under low overall stress, interaction of dynamic rupture propagation with pore pressure development, patterns of rupture propagation in events nucleated naturally as a part of a sequence, the earthquake nucleation process, earthquake sequences on faults with heterogeneous frictional properties and/or normal stress, and others. The procedure is illustrated for a 2-D crustal strike-slip fault model with depth-variable properties. For lower values of the state-evolution distance of the friction law, small events appear. The nucleation phases of the small and large events are very similar, suggesting that the size of an event is determined by the conditions on the fault segments the event is propagating into rather than by the nucleation process itself. We demonstrate the importance of incorporating slow tectonic loading with elastodynamics by evaluating two simplified approaches, one with the slow tectonic loading but no wave effects and the other with all dynamic effects included but much higher loading rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A constitutive model for fault gouge deformation in dynamic rupture simulations

In the context of numerical simulations of elastodynamic ruptures, we compare friction laws, including the linear slip-weakening (SW) law, the Dieterich-Ruina (DR) law, and the Free Volume (FV) law. The FV law is based on microscopic physics, incorporating Shear Transformation Zone (STZ) Theory which describes local, non-affine rearrangements within the granular fault gouge. A dynamic state var...

متن کامل

Shear strain localization in elastodynamic rupture simulations

We study strain localization as an enhanced velocity weakening mechanism on earthquake faults. Fault friction is modeled using Shear Transformation Zone (STZ) Theory, a microscopic physical model for non-affine rearrangements in granular fault gouge. STZ Theory is implemented in spring slider and dynamic rupture models of faults. We compare dynamic shear localization to deformation that is unif...

متن کامل

Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates

The near-surface areas of major faults commonly contain weak, phyllosilicate minerals, which, based on laboratory friction measurements, are assumed to creep stably. However, it is now known that shallow faults can experience tens of meters of earthquake slip and also host slow and transient slip events. Laboratory experiments are generally performed at least two orders of magnitude faster than...

متن کامل

Fault structure, frictional properties and mixed-mode fault slip behavior

a r t i c l e i n f o Recent high-resolution GPS and seismological data reveal that tectonic faults exhibit complex, multi-mode slip behavior including earthquakes, creep events, slow and silent earthquakes, low-frequency events and earthquake afterslip. The physical processes responsible for this range of behavior and the mechanisms that dictate fault slip rate or rupture propagation velocity ...

متن کامل

Precursory changes in seismic velocity for the spectrum of earthquake failure modes

Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviors including slow earthquakes, tremor and low frequency earthquakes1. Laboratory and theoretical studies predict changes in seismic velocity prior to earthquake failure2, however tectonic fault...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000